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ABSTRACT

——- = New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are
developed and tested based on the Favre-filtered equations of motion for an ideal gas. A
comnpressible generalization of the linear combination of the Smagorinsky model and scale-
simnilarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress ten-
sor. An analogous thermal linear combination model is also developed for the subgrid-scale
heat flux vector. The two dimensionless constants associated with these subgrid-scale models
are obtained by correlating with the results of direct numerical simulations of compressible
1sotropic turbulence performed on a 9634gr1d using Fourier collocation methods. Extensive
comparisons between the direct and modeled subgrid-scale fields are provided in order to val-
idate the models. A large- eddy s’x‘mulatxon of the decay of compressible isotropic turbulence -

- - conducted on a coarse 323 gnd 38 shdwn to yield results that are in excellent agreement
with the fine grid direct slmulanon Future applications of these compressible subgrid-scale
models to the large-eddy simulation of more complex supersomc ﬂows are discussed briefly.
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1. Introduction

The direct numerical simulation of turbulent flows at the high Reynolds numbers encountered
in problems of technological importance is all but impossible as a result of the wide range
of scales that are present. Consequently, the solutions to such problems must invariably
be based on some form of turbulence modeling. Traditional turbulence models based on
Reynolds averages have had only limited success since the large scales of the turbulence
- which contain most of the energy - are highly dependent on the geometry of the flow
being considered. Experience has indicated that such models usually break down when a
variety of turbulent flows are considered (Lumley 1983). The small scales are more universal
in character, and serve mainly as a source for dissipation. Hence, it can be argued that a
better understanding of turbulent flows could be achieved if just the small scales are modeled
while the large scales are calculated (Deardorff 1970). This is the fundamental idea behind
large-eddy simulaticns.

During the past decade, considerable progress has been made in the large-eddy simulation
of incompressible turbulent flows. This effort has shed new light on the physics of turbulence.
The earliest work relied heavily on the use of the Reynolds averaging assumption to elim-
inate the Leonard and cross stresses while the Reynolds stresses were computed using the
Smagorinsky model (Deardorcff 1970, Leonard 1974, Reynolds 1976). More recent large-eddy
simulations have been based on the direct calculation of the Leonard stresses with models
provided for the cross and Reynolds subgrid-scale stresses in order to enhance the numerical
accuracy (see Biringen and Reynolds 1981, Bardina Ferziger and Reynolds 1983). However,
among these newer models, only the Bardina, Ferziger and Reynolds (1983) model, with a
Bardina constant of 1.0, satisfies the important physical constraint of Galilean invariance
(Speziale 1985). The underlying physical concepts, fundamental nurnerical algorithms, and
comprehensive historical data behind the recent ficld of large-eddy simulation have been
presented in articles by Schumann (1975), Voke and Collins (1983) and Rogalio and Moin
(1984). More recently, work on the subgrid-scale modeling of transition to turbulence of ini-
tially laminar incompressible flows has begun (Piomelli, Zang, Speziale and Hussaini 1990).
Several large-eddy simulations have been performed and initial results are promising.

Despite the intensive research effort that has been devoted to the large-eddy simulation
of incompressible flows as outlined above, it appears that no large-eddy simulation of a

compressible turbulent flow has yet been attempted. Of course, such work could have im-;\ & .

portant technological applications in the analysis of turbulent supersonic flows, where shock”
waves are generated, and in turbulent flows within combustion chambers. The prerequisite
for carrying out such computations is the development of suitable subgrid-scale models for
compressible turbulent flows. With the exception of the recent work of Yoshizawa (1986)
and Speziale et al. (1988), few, if any, studies along these lines appear to have been pub-
lished. The subgrid-scale models of Yoshizawa are only suitable for slightly compressible
turbulent flows since they made use of an asymptotic expansion about an incompressible
state. Recently however, Dahlburg, Zang and Dahlburg (1990) have performed an extensive
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parameter study using the model developed by Speziale et al. (1988). It was shown by
Speziale et al. (1988) that, for the purposes of accuracy, the Leonard and cross stresses
must be accounted for. Furthermore, the modeling of the 1sotropic part of the Reynolds
subgrid-scale stress tensor was shown to be questionable - an issue that was left for future
research.

In this paper, complete subgrid-scale models are developed for the closure of the Favre-
filtered Navier-Stokes and energy equations. The compressible subgrid-scale stress model
that is obtained in Section 2 reduces to the linear combination model of Bardina, Ferziger
and Reynolds (1983) in the incompressible limit. Likewise, the subgrid-scale heat flux model
that 1s obtained herein consists of an analogous linear combination of scale similarity and
gradient transport terms. The dimensionless constant which appears in the subgrid-scale
stress model 1s arrived at through correlation analysis of data generated from direct numerical
simulations of compressible isotropic turbulence. A more detailed comparison of computed
and modeied subgrid-scale fields is presented along with the results of a large-eddy simulation
of compressible isotropic turbulence.

2. Subgrid-Scale Models for Compressible Turbulence

The compressible turbulent flow of an ideal gas is considered. Such flows are governed by
the continuity, momentum and energy equations which - neglecting body forces - are givea

by (cf. Batchelor 1967)

Op | O(pui) _ ‘e
g + _6xk =90 \1)
O(pve) | Olpuevy)  Op  Oom
8t B:cl - —6.‘Ek + al‘( (2)
O0(ph) OB(phvy) Op Op o ,6 0T

ot + Oz, - E + vkazk + Bxk(xa:ck)

respectively, where p is the mass density, v is the velocity vector, p is the thermodynamic
pressure, u 1s the dynamic viscosity, h is the enthalpy, T is the absoluts temperature, and «
is the thermal conductivity. The viscous stress o4 and the viscous dissipation ¢ are defined

by

+ (3)
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respectively. Herein, the Einstein summation convention applies to repeated indices. Equa-
tions (1)-(3) must be supplemented with the equations of state

P = pRT, h=C,T (6)




for an ideal gas where R is the ideal gas constant and Cp is the specific heat at constant
pressure. Likewise, the dependence of the viscosity and thermal conductivity on the temper-
ature must be provided (i.e., reiationships of the form p = u(T) and x = «(T) are needed
and these depend on the gas under consideration).

Any flow variable F can be filtered in the following manner:
F(x) = /D G(x = 2, A)F(.)d%2 (1)

where G is a filter function, A is the computational mesh size, and D is the domain of the
fluid. The filter function G is typically taken to be an infinitely differentiable function of
bounded support in a bounded domain, or a Gaussian distribution in a periodic domaint. It
is normalized by requiring that

/DG(x —2, A% = 1. (8)

It follows that in the lirnit as the computational mesh size goes to zero, (7) becomes a Dirac
delta sequence, i.e.

lim [ G(x - 2,8)F(z)d% = /D §(x ~ 2)F(2)d*z = F(x) 9)
where §(x —z) is the Dirac delta function (Arfken 1970). The filter function has the property
that the amplitude of the high-frequency spatial Fourier components of any flow variable F
are substantially reduced. Consequently, F represents the large-scale part of F. At this
point, it should be mentioned that as a result of the defining properties of G, it follows that

7 o o
ot  ot’ Ozx - Ozx

Piomelli, Ferziger and Moin (1987) discuss the relationship between the form of the filter
function and that of the subgrid-scale turbulence model.

The turbulent fields are decomposed as follows, based on Favre filtering:

F=F+F (11)
where the Favre filter L
F = f’%f- (12)

is defined in an analogous manner to the Favre time average which has been of use in the
more traditional studies of comnpressible turbulent flows (Hinze 1975). However, contrary to
the more traditional Favre time averaging,

F4F (13)

'A Gaussian filter is adopted for the calculations in this study
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in general, and hence _
F' #0. (14)
The direct filtering of the continuity equation (1) yields

05 0(pix)
oy MRS 1
5" 8z, (15)

where we have used (10) and (12). Likewise, a direct filtering of the momentum equation
yields 5 5
o(pv O(pnt aa T
(k) 4 (Pxty) _ P n kl n k!

= — 16
ot 0z, Oz, Ouy 6z (16)
where .
p=pRT (17)
and —_—
T = —P(Ud — Uty + vy + vk + URY)) (18)

is the subgrid-scale stress tensor. The subgrid-scale stress tensor can be decomposed as
fcllows,

r=L+C+R (19)
where
Ly = —p(bx01 — 0di) (20)
Cu = —ﬁ(va11+v;f1k) (21)
Ru = Py, (22)

are respectively, the subgrid-scale Leonard, cross, and Reynolds stresses based on Favre
filtering. From (20), it is clear that the Leonard stress can be calculated directly and does
not need to be modeled. The cross stress is modeled with the scale similarity model

Cut = — (0t — Tay) (23)

(with a coucficient of unity to ensure Galilean invariance of the overall model). This model
1s analogous to its incompressible counterpart, which has been reasonably successful in the
large-eddy simulation of incompressible turbulent flows (Bardina, Ferziger and Reynolds
1983, Speziale 1985). The subgrid-scale Reynolds stress tensor is separated into deviatoric
and isotropic parts, respectively, as follows:

R = pR+ R (24)
where 1
pRu = —p(viv] - 5”.’7-':51‘1), (25)
and 1
1B = - gpvvbu. (26)




Here, the deviatoric part of the subgrid-scale Reynolds stress tensor, pR, is modeled using
the compressible generalization of the Smagorinsky model that is given by

. 1.
pRu = QCRﬁAzfl.lg/z(Skz - -55,,,,,,5“) (27)
where
1,00, Oy
Sk = 2 3_3:1 + 6_2:;,) (28)
11§ = S;nnSomn (29)

(i.e, S is the Favre filtered rate of strain tensor while Il is its second invariant) and Cg is
the compressible Smagorinsky constant. Yoshizawa — by means of a two-scale DIA method -

derived a model for the isotropic part of the subgrid-scale Reynolds stress tensor, /R, given
by

2
R = —-§CIFA2”55H (30)

where Cy is a dimensionless constant. Equation (30) can, for the most part, be obtained
by making a turbulence production equals dissipation equilibrium hypothesis (Yoshizawa
1986). However, this model was shown by Speziale et al. (1988) to correlate very poorly
with the results of direct numerical simulations of compressible isotropic turbulence. Since
1R is extremely small compared to the thermodynamic pressure, we propose to neglect it —
an assurnption that will be justifed later. Hence, the overall subgrid-scale stress model we
propose takes the form

- - =~ = ~y 1 ~
Tt = —P(Vx — Vx0p) + ZC’RﬁAzII;/z(SH - §Dmm5u)- (31)

In the incompressible limit, Eq. (31) reduces to the linear combination model

— Tu/p = Tx; — DaU; — QCRAQI%/zSu (32)

of Bardina, Ferziger, and Reynolds (1983) where the Bardina constant is one in order to sat-
isfy Galilean invariance (Speziale 1985). This reduction process is a consequence of Eq. (31)
and

v =y, Sam = Smm =0 (33)

when p becomes constant.

A direct filtering of the energy equation yields the filtered form

8(C,T) , Copul) _ 95 T Op

ot 2 TR
6 , oT 0Qx
+6$;¢(K6$k B 6a:k (34)
where — .~ —
Qk = Cop (kT — 5T + viT + 0 T' + v, T") (35)
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is the subgrid-scale heat flux. The subgrid-scale heat flux can be decomposed in the same
fashion as the subgrid-scale stresses. This leads to

Q=Q® +Q® 4+ Q® (36)
where

QY = Cp(in - oT) (37)

QO = Cp(viT +inT") (38)

QR = C,pu,T (39)

are the Leonard, cross, and Reynolds heat fluxes. Analogous to the modeling of the cross
stress, the cross heat flux is modeled using the scale similarity format

09 = C,5(0T ~ 3u T). (40)

The Reynolds heat flux is modeled with the usual gradient transport format as follows (cf.
Eidson 1985):

=4 CP 1/2 aT
T = - == A?IT 41
vl Prr 5 aa:k (41)
where Prg is the turbulent Prandt! number. Of course, the Leonard heat flux can be

calculated directly. Hence, the overall model for the subgrid-scale heat flux we propose is as
follows:

[ — -z CR

T
Qx = Cop I[(f;kT - v,T) - AT 0

PrT S Oz

and is obtained by combining equations (37), (40), and (41).

(42)

At this point, some comments need to be made concerning the viscous terms on the
right-hand side of (16) and the pressure gradient-velocity and viscous dissipation terms
which appear on the right-hand side of (34). The pressure gradient-velocity correlation can
be written in the alternative form

dp O(px)  Oux

vka_z—k- = dzk p@:z:k
0 Ovi
= Fm PR Py,
J . - Jd (R Ovy
= —(oRu.T —_— = —_—— {
al'k(pRvk ) + Bxk (CP Qk) p@zk \43)
where only the pressure dilatation term
Ovy _ 0vk
Pa—xz = pR(T (9121,;)
(44)
= pRTa—Uk- + —RT’Q-— + pRTa— + pRT' = 6v"
62k 6 6131: Tk
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is not yet closed. The temperature dilatation correlation (T'%) 18 extremely difficult to
model and not much success has been achieved in dealing with it ‘icn the context of Reynolds
stress models. However, within the framework of subgrid-scale modeling, this term and its
cerresponding cross correlation have physical interpretations. They represent the contribu-
tion of the dilatation of the small scales to the internal energy variation of the fluid - an
effect which is expected to be small. Hence, for this initial study, we neglect such terms.
Furthermore, since the mean temperature is constant and the temperature fluctuations are
small (< 10%), the viscosity and thermal conductivity are held constant. For similar reasons,
we also neglect the small scale component of the viscous dissipation.

The turbulence model proposed herein is thus complete once values for the constants
Cr and Prr are obtained. This will be accomplished using the results of direct numerical
simulations of compressible isotropic turbulence.

3. Numerical Method

Our direct simulations of compressible turbulence are based on a non-dimensional form of
Eqs. (1)-(3), with the time derivative in the energy equation written solely in terms of the
pressure. In order to alleviate the severe stability limit imposed at very low Mach numbers
by the acoustic waves, a splitting method is adopted. The first step integrates the equations

=L =y, (45)

A(pui) N O(puku) _ Oon
Jt 67;, B 517( ’

(46)

ap + a‘Uk _ C2 B(pvk) N 1 0T
axk 7p6$k ° a:ck B RCPTAI:O Bmkaazk

—2+vk

ot

+(y-1)9, (47)

while the second step integrates
2 , Bow) _
at 6:ck
O(pux) . Op

ot + E:O' (49)

9 , a0lpw) _
ot Oz
The constants ¢y and M, are the current root mean square (rms) value of the sound speed (c)
and the reference Mach number, while y = C,/C,, where C, is the specific heat at constant
volume. These equations are non-dimensionalized in terms of a length scale (Lo), a velocity
scale (Uy), a pressure scale (P;), a reference viscosity 4 and a reference thermal conductivity

0, (48)

0. (50)
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x. The Reynolds number is given by Re = poUoLo/u, the Prandtl number by Pr = Cpu/x,
and the reference Mach number by My = Us/(7RTo)'/?. For all calculations presented in
this study, v = 1.4, and Pr = 0.7. Initially, the density po is uniform and equal to one. The
computational domain is a cube, normalized to [0,27]>. Periodic boundary conditions are
imposed in all three directions.

The spatial derivatives in these equations are approximated by a Fourier collocation
method (see, for example, Hussaini and Zang 1987). In each coordinate direction, N grid
points are used: ;. = 27j/N, for j = 0,1,..., N — 1. The derivative of a function F(x) with
respect to zx is approximated by the analytic derivative of the trigonometric interpolant of
F(x) in the direction zx. Most simulations of incompressible, homogeneous turbulence have
used a Fourier Galerkin method. The compressible equations, however, contain cubic rather
than quadratic nonlinearities and true Galerkin methods are more expensive (compared with
collocation methods) than they are for incompressible flow. The essential difference between
collocation and Galerkin methods is that the former are subject to both truncation and

aliasing errors, whereas the latter have only t n errors. As discussed extensively by
Canuto, et al (1987), the aliasing terms are n ~t for a well-resolved flow. However,
care 1s needed to pose a collocation method iu 2 which ensures numerical stakility. For

this reason, the second term in (46) is actually ca : the equivalent form

1 (d(pvev) pv1%+vk6(pw)

2 oz, oz, oxr; |

(51)

As noted by Feiereisen, Reynolds and Ferziger (1981), when this form is employed together
with a symmetric differencing method in space (for example Fourier collocation), then in
addition to mass, and momentum, energy is conserved for the ideal compressible equations
(zero viscosity and thermal conductivity) in the absence of time differencing (and splitting)
errors.

The second fractional step of the splitting, given by (48)-(50), contains most of the effects
of the acoustic waves. This sphtting 1s employed at cach stage of a third-order Runge-
Kutta method. In the simulations reported here, the second fractional step is integrated
analytically. In Fourier space, (48)-(50) become

dp ., .

é% + zk;m; =0 (52)
om .

———6tl +1tkip=0 (53
ap . 5

5}; + ictkyry = 0 (54)

where m; = py; and Fourier transformed quantities (which depend upon the wavenumber k)
are denoted by a circumflex. The exact solution of these equations is

1. . )
’5(2) = [)(1) -+ glfl COS(CokAt,) + B biIl(CokAt,) - A] (55)
0
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il ~ il - 24 sin(cokt,) = B cos(cokAL,) + B] (56)
o]

13(2) = A COS(CgkAt.) + B sin(coAt,) (57)

where k = |k| is the magnitude of the Fourier wavenumber, 4 = 51, B = i%k,rhsl). The
superscript 1 denotes the result of the first fractional step of the splitting and the superscript
< the results of the second fractional step. The effective time-step of the Runge-Kutta stage
is denoted by At,. The advantage of this splitting is that the principal terms responsible for
the acoustic wares have been isolated. Since they are treated semi-implicitly, one expects
the time-step limitation to depend upon v + |c — ¢g| rather than v + ¢. (Although there is
also a viscous stability imit for the first fractional step, it is well below the advection limit
in the cases of interest.) This is clearly a substantial advantage at low Mach numbers. Since
the second fractional step is integrated analytically, it does not contribute to any time step
limitations. If one is truly interested in all the details arising from the sound waves, or if
there is a substantial coupling between the sound waves and the rest of the flow, then the
time-step must be small enough to resolve the temporal evolution of these waves. But, if
only the larger-scale sound waves are of interest, then this splitting method is useful.

During the acoustic fractional step, an isotropic truncation is performed: for each variable
(p, pv and p), all Fourier coefficients for which

kik > (N/2) (58)

are set to zero. This reduces the numerical anisotropy produced by a cubic truncation.
Moreover, it reduces the aliasing interactions in the collocation method (Canuto et al 1987,

Chapters 3 and 7).

The compressible code can also be executed in a purely explicit mode. In this case no
splitting is performed; Eqs. (45)-(50) are simply combined in the appropriate manner and
integrated directly.

The expected stability limit of this three-dimensional Fourier collocation method for the
compressible Navier-Stokes equations has the form

max z_: U,} (%\;) (59)

.
or 1

At < «

where for the semi-implicit version,

U, = |u] + |c — col (60)
while
Uy = v + |c] (61)
when the time advancement is fully explicit. For the third-order Runge-Kutta method
employed here, we use a = 0.5.

A number of simulations have also been conducted of strictly incompressible flow. These
were performed with a separate code which also used a Fourier collocation method, but for
the simpler, incompressible Navier-Stokes equations.




4. Comparison with Incompressible Results

The initial conditions for the numerical simulations were designed to reproduce the experi-
mental data of Comte-Bellot and Corrsin (1971) on isotropic turbulence, hereafter referred to
as CBC. These experiments were also the basis of direct simulations used by Clark, Ferziger
and Reynolds (1979), Bardina, Ferziger and Reynolds (1983), and McMillan and Ferziger
(1979) in their analyses of incompressible LES models. Initial conditicns are chosen to match
CBC measurements at a non-dimensional time of 240 (cf. table 4 in Comte-Bellot and Corrsin
1971). The computational domain is a cube of side 20/27 cm. The CBC parameters are
associated with measurements taken behind a grid with a mesh spacing of one inch, and a
mean fluid velocity of 393.7 in/sec. The initial time in the direct simulation corresponds to
t = 0.00254 sec in the CBC experiment. The reference length (Lo), velocity (Up) and pres-
sure (Py) are respectively 20/2m cm, 1 cm/sec and 1 gr/cm sec?. After generating a random,
divergence-free velocity profile, the kinetic eaergy (in Feurier space) is scaled to match the
measured CBC energy spectrum (see Appendix). Finally, the velocities are scaled so that
the initial rms velocity agrees with the measured values. This adjustment is typically less
than 1%, which provides one measure of the uncertainty in the fit to the experimental data.
With the chosen non-dimensionalization, the Reynolds number Re = UyLo/v is 22.74 based
on a kinematic viscosity v = 0.14 em?/scc. Table 1 summarizes the parameters measured

CBC | 64° | 96° | 128°

Vems | 6.75 | 6.75 | 6.75 | 6.75
Lr(Sk)| - 100 00] 00
E - | 683|683 683

€ 462 | 375 | 432 | 447

A | 0.26 | 0.28 | 0.27 | 0.25

A1z - 0.20]0.19|0.27

A3 - 1020019 0.26

Ry | 381 | 436|413 378

Table 1: Initial conditions based on CBC experiment and Clark et al.
(1979) calculation. Mach number is zero.

by CBC at t=240. The Taylor microscale length A, is defined by

1/2
()
A = .



and the dissipation € by

€ = 2#/5"J‘S.'jd3$, (63)
where §;; is the rate of strain tensor
1 {0v, Ov
S.‘j =5 (%: + —6?.> . (64)

In Eq. (62), (-) denotes a spatial average. Its exact definition is given in the Appendix. The
Taylor microscale Reynolds number is

Ry = 221 (65)

v

The velocity derivative skewness and flatness tensors Sk and F1 are the third and fourth
moments of the velocity gradient and are defined by

Ski; = %/(ag—;j‘—’))z;zn (66)
o,

(3))

In tables 1 and 2, only the trace of the skewness and flatness tensors are shown. The
remaining columns list the parameters obtained from the initial conditions of the numerical
simulations on 643, 96 and 1283 grids. There is a 20% discrepancy between the dissipation
obtained by CBC and the dissipation compuied on the coarsest grid which suggests that a 64°
grid has marginal resolution, at best. A 12% difference between the value of R, calculated
on the 64 grid and that obtained by CBC confirms the need for grids finer than 64*. On a
963 grid, both the dissipation and K, are in much closer agreement with CBC. Discrepancies
between our results and CBC for € and R, are respectively 6.5% and 7.5% on a 963 grid. On
the finest grids on which the direct simulations were performed, the computed values of €
and R,, respectively, have relative errors of 3.5% and less than 1% when compared to CBC.

(67)

The numerical simulations were run from ¢ = 240 until ¢t = 375 (in CBC units), which
corresponds to a non-dimensional time interval of 0.1145 (in our units). Table 2 furnishes a
comparison of the experimentally -. 'd parameters with those from the numerical sim-
ulation at the final time. On the cow- ,rid, the total dissipation rate that was calculated

is still slightly below the value measu.«.. by CBC. A 96° grid ger:erates values of € consistent
with CBC.
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[CBC | 643 | 965 | 128
Vems | 5.03 | 5.18 | 5.19 | 5.21 |
lr(Sk) | - |-0.42 |-0.51 | -0.52
E 38.6 | 40.3 | 40.4 | 40.7
€ 154.4 | 151.3 | 154.6 | 156.8
bYR 0.34 | 0.33 | 0.34 | 0.33
Ao - 1024 |024]023
A3 - | 024024023
R, 366 | 37.8 | 40.4 | 37.2

Table 2: Final conditions (t=0.1145) based on CBC experiment and
Clark et al. (1979) calculation. Mach number is zero.

At t=0.1145, the diagonal components of Sk are —0.5 which agree well with the numerical
results of Kerr (1985). Kerr studied isotropic, turbulent flow, but prevented the decay of
energy by using an exterior energy source at the large length scales.

As ncted in the previous section, we have chosen not to de-alias the advection terms.
In reaching this decision we drew upon the extensive evidence that has accumulated on
aliasing effects in the last dozen years (Canuto, et al 1987., Chapters 3, 4 and 7) and upon
tests conducted with the incompressible isotropic turbulence code. In this code, de-aliasing is
accomplished by applying the 2/3-rule (Canuto, et al 1987, Chapters 3 and 7) in an isotropic
fashion; e.g., the de-aliased results for a 64 grid are obtained by running the incompressible
code on a 96° grid and applying the truncation given by (58) with N/3 in place of N/2 on
the right hand side. The results are summarized in Fig. 1. Here we present the energy
spectra E(k) (defined in the Appendix) for 642, 963, and 1283 grids at t = 0.0586 for both
aliased and de-aliased calculations. Some adverse effects of aliasing are apparent on the 643
grid, but they are only in the tail of the spectra, and they are already insignificant on a 96°
grid. For the reasons outlined here, a 96 grid was chosen as the standard discretization for
the incompressible and for the compressible simuiations.

5. Compressible Turbulence Results

5.1. Direct Sitmulations

Recent work on the direct numerical simulation of homogeneous compressible turbulence
nas indicated the crucial role played by the initial conditions. Passot and Pouquet (1986)
conducted direct simulations of two-dimensional, compressible isotropic turbulence and con-
cluded that when the initial rms density fluctuations arc small, the turbulence statistics

12




remain quasi-incompressible for turbulent Mach numbers M, less than 0.3.

L1\ /2
Mo=Mo (=) .
v= M <T> (68)

They also demonstrated (through the use of direct numerical simulations) that eddy shock-
lets result for sufficiently high initial rms density fluctuations and/or turbulent Mach num-
bers. A more systematic analysis and categorization of the effect of the initial conditions on
compressible isotropic turbulence was achieved recently by Erlebacher et al. (1990).

They concluded that for 0 < M, < 0.3, p,m, must initially be O(M,) for the resulting
turbulence statistics to become strongly comnpressible with an O(1) ratio of compressible
to incompressible turbulent kinetic energy. (For the range of M, considered herein, no
eddy-rhocklets occur.) On the other hand, if initially pym,, Trms < M;, then the resulting
turbulence statistics remain quasi-incompressible.

We first present the results of direct numerical simulations of compressible isoiropic
turbulence corresponding to the initial conditions of the CBC experiment but with a variety
of non-zero mean Mach numbers. Since for these simulations, the initial conditions are
Prms = 0, Tym, < 1, only weakly compressible turbulence statistics are expected according
to the theoretical results of Erlebacher et al. (1990). Unless specified otherwise, a subscript
rms for any variable F refers to the quantity ((F — (F))2)/2/(F).

The initial pressure distribution over the entire field is specified. The fluctuating pressure,
ps i8 determined {rom the velocity distribution by enforcing a zero initial time derivative for
V -v. A Poisson equation for p; is obtained from the divergence of the momentum equation
afver setting the time variation of V - v to zero (Feiereisen et al. 1981). The mean pressure,
Pm, 18 then determined so that a prescribed initial mean average Mach number, My, defined
to be the ratio of rms fluid velocity and rms speed of sound, is achieved. An analytic
expression for p,, 18 given by .

M VP + [ypspidis
pm = Y[ o ds |
The initial average Mach number is specified at the outset of the direct numerical simulations

(DNS) as an initial condition. Density is initially set to unity, while the temperature, if

required, is derived from the equation of state. Direct numerical simulations are performed
for M, = 0.0,0.1,0.4 and 0.6.

(69)

The Mach 0.6 case contains localized regions of supersonic flow as evidenced by tables
3-4 and by the three.dimensional contour of Niach 1 furnished in figure 2. Nonetheless, the
statistical properties of the flow remain large.y unaffected by compressibility effects. This is
shown in figures 3-6 which track the time histories of several statistical variables obtained
from 962 DNS. The time histories for skewness (fig. 3), A, (fig. 4), and total kinetic energy
(fig. 5) at Mach numbers 0.0, 0.1, 0.4 and 0.6 are virtually superimposed on each other.

Flatness and skewncss are affected the most by compressibiiity effects in these simula-
tions. Figure 3 indicates that the skewness which corresponds to an isotropic turbulent state
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monotonically increases with Mach number. It is -0.50 at My = 0 and has increased to -0.46
at My = 0.6. Before the flow has reached a state of isotropic turbulence, the time evolu-
tion of skewness at all Mach numbers are indistinguishable from each other. The physical
system has equilibrated after approximately one third the total computation time. While
not reaching an equilibrium value, it is nonetheless worthwhile to point out that the flatpess
parameter decreases by 2% as the Mach number is raised from 0.0 to 0.6 as seen in figure 6.

Figure 5 illustrates the decay of turbuient kinetic energy (f 3v,v; d*z) as a function of
time. This decay is a natural consequence of viscous damping. After a brief initial increase,
R, continuously decreases in time, (fig. 7), with no sign of stabilizing. On the other hand, A
which is representative of the smaller eddies, increases in time (fig. 4). This indicates that
energy in the higher wavenumbers is being depleted by the molecular viscosity.

Tables 3-5 sumnmarize the results of direct simulations of compressible isotropic turbu-
lence for My = 0.1,0.4 and 0.6, for t=0.1145 on three different grids?. Incompressible results
are included for comparison. On all the grids, the compressible data converges to the in-

My| E € |1V Vimaz | (2tr(SK)) [ (M) | M.
0.0 | 40.26 | 1574 | 0.00 20424 | 0.00 | 0.00
0.1(4082 1582 | 0.17 0440 |0.07 | 0.21
0.4 |41.09 1604 | 1.50 -0.428 | 0.28 | 0.84
0.6]41.32|1623| 3.30 0406 | 0.43 | 1.26

Table 3: Summary of direct simulations on a 643 grid with initial aver-
age Mach numbers of 0.0, 0.1, 0.4 and 0.6 at t=0.1145.

M| E € [V Vimae | (Lr(SK)) [ (M) | Mooz |
0.0 | 40.35 | 154.3 |  0.00 20506 | 0.00 | 0.00
0.1 4049|1555 | 0.14 .0.505 | 0.07 | 0.23
0.4 4079 |157.0| 117 -0.493 | 0.28 | 0.93
0.6 |41.04|158.3| 2.82 0477 | 0.42| 1.39

Table 4: Summary of direct simulations on a 96 grid with initial aver-
age Mach nurnbere of 0.0, 0.1, 0.4 and 0.6 at t=0.1145.

compressible results as the Mach number is driven towards zero. As expected, the divergence

of velocity no longer vanishes, and is now an increasing function of M.

TA DNS at. Mo = 0.6 was not performed on the 1282 grid.
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M,| E € 1V Viae | (S7(SK)) | (M) | Momar |
0.0 | 40.29 | 153.98 | 0.0 0521 |0.00] 0.00
0.1 |40.39 | 154.84 | 0.14 -0.518 | 0.07 | 0.21
0.4 | 40.78 | 156.54 | 1.11 -0.505 | 0.28 | 0.86

Table 5: Summary of direct simulations on a 128* grid with initial
average Mach numbers of 0.0, 0.1 and 0.4 at {=0.1145

While the dissipation is approximately the same on the two finer grids, the consistently
lower values on the coarsest grid confirm the previously stated conclusion that a 64% grid
cannot resolve all the length scales. As a function of increasing Mach number, the trace of
Sk increases, the dissipation decreases, while the total kinetic energy increases very slightly.

The results in tables 3-5 are averages over several DNS runs with different initiai seeds.
A given seed uniquely determines the initial velocity distribution, and therefore the pressure
and temperature fields. Variations of the seed are only necessary to eliminate the statistical
uncertainty due to the random velocity distribution. The distribution of velocity on two
different grid sizes are different even when the initial seed 1s the same.

Skewiness is even more sensitive to the grid refinement than the dissipation as witnessed
by its decrease from a value of -0.505 to one of -0.521 on 96° and 128 grids respectively. This
might be a result of the greater sensitivity of the fluctuating velocity field spatial derivatives
to slight inaccuracies in the flow variables.

5.2. Data Analysis

Using the data generated from the previously discussed DNS of compressible homogeneous
turbulence at low Mach numbers, the proposed subgrid-scale (SGS) model is now validated.
Models relate the subgrid-scale stresses — which are not available to a large-eddy simulation
code - to the large scale velocities which are known. These velocities are simply the Favre-
filtered velocities introduced earlicr. The Favre-filteied velocities are calculated by filtering
the resolved DNS velocity field with a Gaussian spatial filter of width A = A;Az,, where
Az is the grid spacing on the fine grid. For convenience, A; and Ay refer to the filter width
A non-dimensionalized with respect to the coarse and fine grid spacing respectively.

Perturbed velocity fluctuations on the fine grid are the difference between the fully re-
solved velocity and the filtered ones, given by

VI =V —V, (70)
From v' and v, subgrid-scale stresses based on DNS, refered to as exact, are calculated.
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These include the Leonard, cross and Reynolds subgrid-scale stresses given by Eqs. (20)-
(22). However, these subgrid-scale stresses themselves do not directly affect the evolution of
the system. The momentum equation is only influenced by the divergence of the subgrid-scale
stresses (i.e., the vector level). Similarly, v - (V - 7) (the scalar level) is a better represen-
tation of the dissipation terms in the energy equation than are the stresses. Consequently,
correlations are performed on the tensor, vector and scalar levels. Ideally, high correlations
are desired on all levels.

The data analysis proceeds in multiple stages. First, the exact stresses calculated from
the DNS are injected down to the coarse grid, along with the filtered velocities. The modeled
subgrid-scale stresses are then calculated (excluding the model constants) on the coarse grid.
Some variables must be filtered a second time (e.g. cross stresc terms). Rather than calculate
them on the fine grid (which is not available to the large-eddy simulation codes), a Gaussian
filter is applied to v on the coarse grid with a filter width of A.. Consistency between the
coarse and fine filter widths i1s achieved by insuring that

Ay Ny
AT (71)

where Ny and N, are respectively the number of nodes along one direction of the fine and
coarse grids. This guarantees that the filtering on the coarse and fine grids is performed
over the same region in physical space. Derivative evaluations on both the coarse and the
fine grid are based on Fourier collocation. Calculations by McMillan and Ferziger (1979)
indicate that the model constants are sensitive to the accuracy of the derivative evaluations.
A general trend that has been observed is that the Smagorinsky constant is lowered when
derivative quantities are evaluated more accurately. Our constants are therefore expected to
lie in the lower range of the values obtained by McMillan (1980).

Next, the model constant, Cg, is calculated. Unfortunately, the constants c..n be calcu-
lated by a wide variety of algorithms, each with its own merits. Moreover, for each algorithm,
the constants can be evaluated from tensor, vector or scalar information. Therefore, criteria
must be establshed to identify the best method. A key test is that L -+ C should be Galilean
invariant. To make use of this fact, an additional constant, C¢, is introduced as an extra
factor in the subgrid-scale cross stress model. A self-consistent method of calculating the
constants must reproduce C¢c = 1 to satisfy the Galilean invariance property stated above
(Speziale 1985). Additional tests are performed on coarse grids with varying degrees of
refinement which further decrease the number of choices. A thorough discussion of model
constants i8 the subject of the next subsection.

Once a single or a multiple sct of model constants have been determined, the model
subgrid-scale stresses are calculated and correlated with t} . exact subgrid-scale strestes
calculated from the DNS after injection onto the coarse grid. The correlations are performed
for each type of subgrid-scale stress individually, and for the total strese (L+ C+ R). Strong
differences in the correlation coefficients relating total stresses are noticed depending on
whether or not the Leonard stresses are included. Finally, the correlations obtained from
the proposed model are compared with the linear combination model, which has been shown
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to be one of the best models available for incompressible isotropic turbulence. Correlation
coefficients are calculated based on the two pairs of constants that are obtained from the
above considerations. The set that is finally retained corresponds to the highest levels of
correlation of the total stress on the vector and scalar levels. These matters are treated more
completely in a later subsection.

To avoid a possible confusion of terminology when referring to variables being compared
against each other, superscripts m and e are sometimes used. They respectively refer to
modeled and exact (based on DNS) variables at the tensor, vector and scalar levels.

5.2.1. Model Constants

The proposed model given by equations (31) and (42) has two undetermined coefficients.
The constant, Cr, is associated with the modeled subgrid-scale Reynolds stress, R, while
Prp is associated with the thermal heat flux.

Although the cross stress model has no constant associated with it, it is nonetheless
muliiplied by a constant Cc. This is done in the hove of reducing the number of schemes
by which the constants can be calculated. A good model should reproduce a cross stress
constant of one to guarantee Galilean invariance. Once the constants have been determined,
Cc is set to one and forgotten. Because the flow is isotropic, constants are expected to
be the same for the three diagonal stress components, the three off-diagonal components
and the three vector components. Therefore, the values presented in the tables below are
averaged over the appropriate components. In the tables, D refers to averaged diagonal
components, OD to averaged off-diagonal components, V to averaged vector components
and S to averaged scalar components. Similar averagings are performed for the correlation
coefficients.

The two constants (Cr and C¢) are calculated using two techniques — each applied on
the tensor, vector and scalar levels. One method enforces equality of the rms levels of the
exact and modeled stresses. This is done for each individual subgrid-scale stress (i.e., the
subgrid-scale Reynolds strcss and the cross stress). Hereafter this approach is referred to
as RMS. The second method utilizes multiple linear least square regression (LSQ) between
the exact (18) and the modeled (31) total subgrid-scale stresses to determine the constants.
Table 6 summarizes the results obtained from incompressible data. The three cases presented
are identical except for the initial random numnber seed. The constants are independent of
the detailed velocity statistics. These results are based on a vector level comparison between
the modeled and exact stresses. Both RMS and LSQ produce C¢ close to unity as required.
Unfortunately this prevents a rational choice from being made between the two approaches.
A more complete set of LSQ constants is presented in table 7. They are computed at Mach
numbers of 0.0, 0.1, 0.4 and 0.6 on the tensor, vector and scalar level. Computations are
performed on a coarse grid of 163,




LSQ RMS

Seed | Cr | Cc Cr Cc
1 0.01211.04( 0.023]11.03
2 0.01271.03 || 0.022 | 1.04
3 0.01211.03 | 0.02211.03

Table 6: Model constants calculated by LSQ and RMS between exact
and modeled total stresses (L+C+R). Results are based on three iden-
tical incompressible simulations except for the random initial velocity
distributions. Calculations are on the vector level on a 163 grid.

At first glance, C¢ is near unity at both the scalar and vector levels. However whereas
on the vector level, the constant remains within 4% of unity for all Mach numbers, this is
not the case on the scalar level where C¢ is a decreasing function of Mach number. This
trend is present in the data generated from both random seeds. Although not presented
liere, the rms cross stress model constant is also near unity when calculated based on vector
level stresses. Therefore, a preferred method for the determination of the model constants
1s still not possible.

5.2.2. Filter Width and Grid Coarseness

Confirmation of the numerical evidence presented by McMillan and Ferziger (1979) that
A. = 2 is the best filter width is given in table 8 (M, = 0.1). The criterion used to
determine the validity of the filter width is that CEMS must remain close to unity on the
vector level. Only when A, = 2 is C¢ near one. Similar results hold for LSQ constants. The
constants also vary with respect to the coarse grid on which the LES is to be performed.
Table 9 summarizes the model LSQ and RMS constants evaluated from modeled stresses
calculated on 16% and 32% grids on the vector level. The data (M, = 0.1) shows that Cp
varies by 30% when the grid size on which the modeled stresses are calculated ranges from
16% to 323, On the other hand, large eddy simulations using finite-difference algorithms
might be performed on grids as large as 1283. Unless a subgrid-scale model is found which
produces constants independent of the coarse grid size, LES simulations wiil run the risk
of producing the wrong results. Perhaps a more complicated dependence of the modeled
subgrid-scale Reynolds stresses on A is required.

The best model constants will produce the highest correlations between the modeled and
exact subgrid-scale stresses on all levels (tensor, vector and scalar). Based on the previous
discussicn, only constants calculated on a vector level are adequate because they produce
a C¢ of unity. Unfortunately, a clear cut choice between RMS and LSQ constants cannot
be made because C¢ (on the vector level) is nearly one in both cases. Rather than make
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an arbitrary choice, both sets of constants are considered when correlating exact against
modeled stresses. For reference, the constants used henceforth are

C5? =0.012 (72)

CEMS =0.023. (73)
Seed 1 Seed 2
Mo, 00 | 01 | 04 [ 06 || 0.0 [ 0.6
D132 132 [ 132 | 131 || 1.32 [ 1.31
CoelV | 104|104 | 102} 100§ 1.04 | 1.00
S 1 1.00 | 1.00 | 0.95 |0.873 || 0.971 | 0.934
D [ 0.018 | 0.018 | 0.018 | 0.018 [[ 0.016 | 0.015
Cg | V 10.012|0.012 | 0.012 [ 0.012 || 0.012 | 0.012
S 10.015 1 0.015 | 0.015 | 0.014 || 0.015 | 0.015

Table 7: LSQ model constants. Filter widths are Ay = 12 and A, = 2.

LSQ RMS
A;| 6 12 | 24 6 12 | 24
Ac| 1 2 4 1 2 4

Cr | 0.007 | 0.012 | 0.020 || 0.019 | 0.023 | 0.034
Ce | 031 {103 {133 (} 082 | 1.03 [ 1.13

Table 8: LSQ and RMS model coefficients between exact and modeled
stresses on the vector level at Mo = 0.1. Results are obtained with fine
filter widths of v, 12 and 24 while maintaining the proper ratio of 6
between fine and coarse widths. The coarse grid is 16°.

5.2.3. Correlations

Correlation coefficients have long been a preferred diagnostic tool for estimating the reliability
of the modeled stresses. However, the subgrid-scale stresses have been separated into various
components (L, C, R), each modeled separateiy and although the correlation of any of these
components against thcir racdels might be excellent, it is still possible for the correlation
of the exact total stress against the modeled total stress to be less impressive. Such is the
case, for instance, when two stress components have opposite signs and partially cancel each
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LSQ RMS

Grid| Cr | Cc | Cr | Cc
7163 [0.0125 | 1.03 [[ 0.023 | 1.03
32% {0.0094 | 1.03 || 0.013 | 1.02

Table 9: LSQ and RMS model constants based on subgrid-scale stresses
evaluated on 163 and 323 coarse grids.

other out. As a final note, before the specific correlation coefficients are presented, one must
always be attentive to the actual relationship between the exact and the modeled variable,
even when the correlation coefficient is relatively high (say, above 70%). A correlation
coeflicient as high as 70% may not be as good as it seems. For example, the correlation
between the functions y = = and y = exp(—z) in the interval {0, 1] is approximately 70%
although they are qualitatively different functions! As a consequence, correlations are only
deemed good if the correlation coefficient is above, say, the 90% level.

For convenience, the compressible subgrid-scale model is restated here:

.. - 1.
DR,'J- = QCRﬁAz (SHSH)I/z (S.'J‘ - 55,,,,,,5.’,’) (74)
1Ri; =0 (75)
Cij = —p(0:0; — 0id;) (76)

The correlation coefficients presented in table 10 between exact and modecled R and C,
are independent of the model constants. The correlation coefficients are insensitive to the
average Mach number variation. The neglect of ; R;; appears to be a good approximation; the
direct sirnulations show it to be several orders of magnitude smaller than the thermodynamic
pressure. For example, for all of the compressible isotropic turbulence simulations conducted

in this study,
(V : IR)rmn

(VD) rms

and, hence, the effect on the isotropic part of the Reynolds stress tensor is dominated by the
thermodynamic pressure.

<3xi0? (17)

In most of the literature on subgrid-scale models, the Leonard stress has been omitted
from the total stress correlations on the grounds that it is calculated exactly (Bardina,
Ferziger, and Reynolds 1983, McMillan 1980, McMillan and Ferziger 1979). However, it has
recently becn shown by Speziale (1985) that the combination L + C is Galilean invariant,
while the Leonard and cross stresses, individually, are not. Therefore we feel that correlations
of the total stress shou!d include the Leonard stress. Table 11 summarizes the correlation
coefficients between the total stress including and excluding the Leonard stress. Results
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M, 0.1{04]06
D | 31|31 |31
R |OD 26|26 |25
V 12212222
S [ 45|45 | 45
D |89 {89 (89
C|OoD}{91(91191
V |80 |80|80
S | 757472

Table 10: Correlations between exact and modeled stresses, R and C,
at Mach 0.1, 0.4 and 0.6.

are presented at Mach 0 and Mach 0.6. When the Leonard stresses are left out, correlation
coefficients similar to those of Bardina are obtained on all levels. However, the inclusion of L
decreases the correlations at the vector level by approximately 30%. Table 11 substantiates
that the correlation coefficients (with and without L) are nearly independent of the initial
average Mach number.

Correlation coefficients between (C + R)® and various combinations of the modeled
stresses using constants calculated by LSQ and RMS are summarized in table 12. The
second column indicates the model against which the total stress is being compared. Al-
though at first glance RMS based constants perform better at the tensor level when the
total modeled stress is considered, at the vector and scalar levels, the trend is reversed.
Correlations at the vector and scalar level are higher by 4% using the LSQ constants.

When the constants are selected based on LSQ, table 12 indicates that the correlations
on all levels are highest when all modeled components are included. However, the dynamic
evolution of the large scale velocities only brings into play the stresses on the vector and
scalar level. Therefore the coefficients which produce the maximum correlations of total
stress on these two levels shculd be chosen. This leads to an optimum choice of

Cr = 0.012 (78)

calculated by least squares fit of the total stress on the vector level.

Conversion of Cp to the standard form currently used in incompressible LES ¥ produces
a Smagorinsky constant of 0.092. McMillan (1979) obtained a value of Cs = 0.10 when
spectral collocation derivative computations were employed. This constant corresponds to
a scalar level evaluation based on RMS. On the vector level, McMillan calculated a higher

9In a number of reports (McMillan and Ferziger 1979, Bardina et al. 1983), the subgrid-scale Reynolds
stress model is proportional to C}. In these cases, the relationship between Cs and Cpis Cg = \/-2'C§
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Mo =0.0 Mo =106
L+C+R | C4+R || L+C+R | C+R
D 93 82 93 81
oD 80 85 79 84
Vv 46 72 46 71
S 56 73 56 74

Table 11: Comparison of correlation coefhicients of the exact total stress
versus its model. The modeled terms are computed on a 163 coarse grid.
Each case is presented with and without the inclusion of the Leonard
subgrid-scale stress terms (calculated exactly). Both the incompressible
and the M=0.6 case are shown to illustrate the weak influence of Mach
number on the correlation coefficients with Cr = 0.012.

Least squares RMS

Cr = 0.0122 Cr = 0.023

Exact | Model | D OD V S} D OD V S

C+R C 78 82 68 62|78 82 68 62
JC+R |8 84 71 708 83 67 67

Table 12: Correlation of the exact total stress (C + R)® with various
models. The modeled stresses are defined in equations (74)-(76).

Smagorinsky constant of 0.13. This value can be obtained from the present data by using
pREMS instead of pRLS?. However as shown above, the correlations of the total subgrid-
scale stress would be lower.

Initial tests of the subgrid-scale heat flux model produced a turbulent Prandtl number
in the range of 0.4 to 0.5. For this initial study, we take

Prr =05 (79)

which is a value that has been used in previously published large-eddy simulations of turbu-
lent flows with thermal convection (cf. Eidsor 1985). A more accurate calculation of Pry
could he accomplished in a compressible flow with significant mean temperature gradients;
this 1s beyo1d the scope of the present study and must await future research.




6. Large-Eddy Simulation of C-..upressible Isotropic Turbulence

Now, in order to demonstrate the efficacy of the subgrid-scale models derived in this paper,
a large-eddy simulation of compressible isotropic turbulence is conducted. Since most high-
speed compressible turbulent flows have significant regions where the turbulence statistics are
quasi-incompressible, it is important that the models perform well for weakly compressible
turbulence - the type of flow considered in the last section for the a prior:i tests. However,
it is well known that a prior: tests only provide a relatively weak gauge for the performance
of subgrid-scale models in an actual large-eddy simulation (see Hussaini, Speziale and Zang
1990). It is therefore important to examine their performance in an actual large-eddy sim-
ulation, particularly for a case where significant compressibility effects are exhibited in the
turbulence statistics.

Direct simulations of compressible isotropic turbulence were conducted corresponding to
the initial conditions Re = 250, (hlf):,lz = 0.1, (Prms)o = 0, (Trm,)o = 0.0626 and two values
of xo: 0 and 0.2 which, respectively, correspond to initial values for (R, )o of 30.0 and 26.3.
Here, x = E€/(E' + E€) where E! and EC are the incompressible and compressible parts of
the turbulent kinetic energy, respectively. The direct numerical simulations were performed
on a 96 mesh. Characteristic energy and dissipation spectra associated with the DNS are
shown in figures 8 (a)-(c) and 9 (a)-(c) for xo == 0 and xo = 0.2, respectively. Figure 8 (b)
clearly shows that x remains very small for all time, with only very slight modification of the
energy spectrum in time. In contrast, figure 9 {b) shows an initial cascade of the spectrum
towards the smaller scales, followed by a strong energy dissipation at the smaller scales of v€.
The dissipation spectra (k? E(k)) shown in figures 8 (a) and 9 (a) demonstrate that both the
small and large scales are well resolved. Comparing figures 8 (c) and 9(c), the incompressible
energy ET is the same at ¢t = 0 and t = 1.6, but is influenced by compressibility effects at
the intermediate times. This influence is characterized by a slight decrease in E! for x, > 0.

Integral properties of these two cases are plotted in figures 10 (a)-(e). These figures
contrast the two runs corresponding to xo = 0 and xo = 0.2. The higher compressibility
has a variety of effects on the flow. The total kinetic energy decays at a slightly slower rate,
while both the skewness and the flatness are decreased. In other words, finite compressibility
drives the fiow more towards a Gaussian state. Both the integral scale L; and the Taylor
microscale )\;; become smaller as xo increases. Lastly, the decay rate of the microscale
Reynolds number is slower for finite xo. A more detailed study of these effects awaits future
research. It would be particularly useful to compute these statistical quantities based on the
solenoidal and irrotational components of velocity.

As noted by Frisch and Orszag (1990), the three dimensional vorticity is formed of
tubular-like sicuctures. This is graphically represented in figure 11 which shows a volume
rendering of w?. Volumetric rendering is a visualization technique whereby rays are projected
from the eye through the flow (which emits and absorbs light). The tubular structures of
vorticity are contrasted with the spherical structure of (V - v)? shown in figure 12. This
difference is to be expected since the dilatation satisfies an isotropic wave equation to lead-




ing order which shows no preferential direction. On the other hand, the vorticity stretching
occurs along the axis of the vorticity vector, which then becomes a preferred direction.

The results for the direct simulation with the strongest compressibility effects (xo = 0.2)
were filtered and injected onto a coarse 323 grid for comparison with an LES which was also
performed on a 323 grid using the subgrid-scale models derived herein. In this manner, a
direct comparison can be made between the results of the LES and the direct simulation
for a flow where the turbulence statistics exhibit significant compressibility. The following
turbulence statistics were compared:

. v\
(1) the integrated average of w,w, and (a_v_)
Zg
(2) the integrated average total and isotropic vortex stretching (denoted by w,S,;w; and
w?V - v, respectively),

(3) the mean turbulence Mach number defined by (M2)!/2

(4) the mean compressible, incompressible and total turbulent kinetic energy denoted by
EC, E" and Epor, respectively,

(5) the level of compressibility x defined by x = E€/Eror, and

(6) the rms of the thermodynamic pressure, density, and temperature denoted by P,n,,,
Prme> and T,,,,, respectively.

These quantities represent a good choice of turbulence statistics to monitor the effects of
compressibility.

In figure 13 (a)-(f), a direct comparison of these statistics for the DNS and LES is made
for a filter width Ay = 2. It is clear that the LES does an excellent job in reproducing
the results of the DNS with the possible exception of x. It should be noted that x exhibits
acoustic osciliations and hence is a difficult quantity to predict accurately; nonetheless, the
LES yields results that are in good qualitative agreement with the direct simulation. The
most striking result i1s how well the compressible turbulent kinetic energy and dilatational
terms are captured.

It was found that a change in the filter width Ay to 1 or 3 - and an adjustment of the
SGS model constants Cgr and Prr of up to 25% - only led to a mild degradatio. ¢t the
results. However, the subgrid-scale models did plav a crucial role in obtaining the accurate
results shown in figure 13 (i.e., a 32® direct simulation is substantially under-resclved). To
illustrate this point, the results of a direct simulation on the coarse 322 grid (i.e., an LES
for Ay = 0) is shown in figure 14 for the same test case. It is clear from this figure that the
coarse grid DNS does a poor job in capturing the incompressible as well as the compressible
turbulence statistics. Consequently, it 1s the adequate performance of the subgrid-scale
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models in draining the proper amount of energy from the filtered fields (to account for the
presence of unresolved scales) which leads to the excellent results obtained in figure 13.
Considering the degree of compressibility exhibited by the turbulence statistics for the test
case considered in this section, it would appear that the feasibility of the proposed subgrid-
scale models has been established. A more extensive parametric study of this subgrid-scale
model is under investigation by Dahlburg et al. (1990).

7. Conclusion

New subgrid-scale models for compressible turbulence have been developed and tested against
the results of direct numerical simulations of compressible isotropic turbulence. These com-
pressible subgrid-scale mecdels, which were based on the Favre-filtered equations of motion
for an ideal gas, contain two dimensionless constants and reduce to the linear combination
model of Bardina, Ferziger and Reynolds (1983) in the incompressible, isothermal limit. The
subgrid-scale stress model constant was found to assume the value of Cg = 0.012 which gives
rise to correlations between the exact and modeled stresses that were above 70% on the ten-
sor, vector and scalar levels — a correlation which compares favorably with those obtained
in earlier work on the subgrid-scale modeling of incompressible turbulent flows. Another en-
couraging feature lies in the fact that these constants and their associated correlations were
found to be comparatively insensitive to a mean Mach number in the range 0 < M, < 0.6.

The results of a coarse grid 322 LES of compressible isotropic turbulence conducted with
the subgrid-scale models derived in this paper were shown to be in excellent agreement with
those obtained from a 96* direct simulation. These results are extremely encouraging since,
for the case considered, on average 25% of the turbulent kinetic energy was cc .npressible.
Furthermore, the ability for the LES to accurately capture the dilatational statistics of the
flow was quite surprising.

Future research will be directed on several fronts. The large-eddy simulation of a com-
pressible turbulent flow with mean temperature gradients could lead to refinements in the
subgrid-scale heat flux model. Furthermore, the large-eddy simulation of compressible, ho-
mogeneous shear flow could yield new insights into the performance of these subgrid-scale
models. Near-wall modifications will also be implemented that allow for the large-eddy sim-
ulation of compressible, wall-bounded turbulent flows. While further improvements are still
possible, we believe that the essential foundation for the large-eddy simulation of compress-
ible turbulent flows has been established in this study. With future research, compressible
LES could have a profound impact on the analysis of supersonic and hypersonic flows of
aerodynamic importance.
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Appendix

lnitial energy spectrum

Both the incompressible and compressible direct simulations impose a specified energy
spectrum on the initial random velocity distribution. For comparative purposes, the data
was obtained from tabular data found in Comte-Bellot and Corrsin (1971). They tabulate
the function E;;(k) which is related to the energy spectrum E(k) by

o 1.,d [LdEy
Ek) = 3K 3% [k dk j (A1)

Unfortunately the data is noisy, so a least squares fit is performed on log E,;, expressed as
a fourth order polynomial in log k. The final form obtained for E,, is

log(E1;) = 2.64359 — 0.72602(log k) — 0.32585(log k)?
+0.03525(log k)* — 0.02344(log k)*. (A2)

Calculation of model constants

Before correlating the total exact subgrid-scale stress against its model, the model con-
stants must be determined. There are many ways of accomplishing this among which two

are retained. The total modeled stress is written as a linear combination of modeled terms
C.t™

™= Ci" (A3)

while the exact total stress is simply

=T (A4)
$=1
The unknown constants to be determined are the C;,. The first approach adopted is to
calculate the root mean square of the pairs C;7™ and 7§ and equate them for each value of
1. The constants thus take the values
Tyt
C,= —. (AS5)

Tym

This method is referred to by RMS in the text.

A least square method applied to the total stress as a whole is an alternative approach.
In this case, the norm

lr™ — o[ = || D27 = Cird)IP? (A6)
=1

is minimized with respect to the coefficients C;. This gives rise {0 a linear system in the
coefficients which can be solved by direct methods if the nurmber of constants is not too
large. For the subgrid-scale model considered in the text, n = 3.
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Definitions

For reference purposes, several statistical definitions are provided here. All variables are
defined on a three-dimensional grid and are subscripted by a single index 7 for convenience.

The average of a function F; is
1 N
(F) = g 25 (A7)

=1

As a function of the average, the rms of F is

Foms = V(F = (F))). (A8)

Correlation coefficients are fundamental in evaluating subgrid-scale models. The correlation
coefficient between two functions Fand G is

(FG)
frma grm' -

C(F,G)= (A9)
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Fig. 2 Three-dimensional Mach 1.0 contours of the DNS at t = 0.0586. The direct simulation

was performed on a 96° grid.
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Fig. 3 Time history of one third the trace of Sk for My of 0.0, 0.1, 0.4 and 0.6. Direct
simulation was performed on a 962 grid. CBC initial conditions.
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performed on a 96° grid. CBC initial conditions.
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on a 96% grid. CBC initial conditions.
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ig. 11 Volumetric representation of w?. Parameters are identical to those of Fig. 10.

IYig. 12 Volumnetric representation of (V- v)2. Parameters are identical to those of Fig. 10.
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